Vectorply
Published

Why out of autoclave processing is good for the composites industry

Consultant Bob Lacovara (Convergent Composites, Perkasie, Pa.) calls out the cost advantages of out-of-autoclave processing.

Bob Lacovara

Share

There are structural composites, and then there are structural composites. Depending on the context, the mechanical properties required for applications can vary over a wide range. Boat hulls, for example, require stiffness and resistance to impact loading. This entails building sufficient laminate bulk to resist dynamic slamming loads. In the case of an underground storage tank, relatively low-modulus materials can be used and the section modulus (thickness) is designed to resist relatively static loads. Aerospace composites, however, are different. They must be both very low in weight and very high in modulus, a requirement that puts them at the edge of the performance envelope.

The hallmark of advanced composites is to provide maximum tensile and compressive properties per specific weight. There are three major characteristics that influence the development of advanced composites properties: fiber modulus (tensile), fiber volume fraction and laminate void content.

Typical aerospace-grade composites produce a void content of about 1 percent, while other composites often exhibit void contents from 3 to 5 percent. Void content is relevant because as it increases, mechanical properties decrease. In a highly loaded carbon fiber laminate, an increase in void content from 1 to 3 percent can result in a 20 percent loss in laminate mechanical properties. Elsewhere in the composites industry, the loss of specific strength is generally compensated by adding bulk to the laminate. But such compensation is unacceptable in aerospace applications.

Because the void content and fiber-volume fraction are so important to the performance of aerospace composites, autoclave processing has been the traditional method to optimize specific strength. Although autoclave processing is typically paired with high-quality/validated laminates of well-characterized materials, and it is the primary method qualified for Tier 1 component manufacturing, it is not without drawbacks. Autoclaves are highly capital-intensive, expensive to operate (energy costs are high) and they limit component size. There are no means by which to make in-process adjustments to vacuum bags or tooling. Labor intensity and slow cycle times severely limit production volume. Further, there are practical barriers. The projected growth of aerospace composites could outpace the available autoclave capacity and at the same time fail to provide economic justification to ramp up the number of large autoclaves in operation. Aerospace composites have not been driven by cost in the past, but as their use expands into airframes and other primary structures, cost will become a more influential factor.

Given these realities, the aerospace industry is looking to out-of-autoclave (OOA) processing for its next-generation structures. The traditional prepreg process requires the additional pressure of an autoclave to produce the desired ply consolidation and associated laminate void content. But emerging vacuum-bag-only (VBO) prepregs feature modified resin matrix rheology that provides better flow characteristics and, as a result, reduced void content. At the same time, vacuum infusion processing (VIP) is advancing in application and qualification for high-performance components.

The fundamental advantage of VIP is its ability to consolidate the fiber pack before the liquid resin is introduced. After the dry laminate is debulked and atmospheric gas is evacuated from the tool cavity, the conditions that create microvoids are greatly reduced. Dry-fiber preconsolidation, then, enables an atmospheric-pressure vacuum bag to produce a laminate with acceptable void content for high-performance applications.

OOA processing not only eliminates the expense of autoclave processing, but also reduces tooling costs. Further, there are multiple variations of the process that can be fine-tuned for specific applications, and the performance/cost ratio is moving toward what is required for sustainable growth within the industry.

Also, OOA processing is good for the overall composites industry in three important ways:

  • It validates the use of composites for an expanded spectrum of applications.
  • It places VBO processing within reach of a larger number of molders and end-use applications, including those in the aerospace industry.
  • Well-developed VIP is opening doors of high-end structural applications to processors who cannot justify an investment in autoclave curing.

Ultimately, the aerospace composites industry can benefit by embracing faster and more cost-competitive OOA methods, and processors who already use them in other markets will benefit from the refinements that will result as aerospace engineers adapt them to meet the demanding weight, performance and dimensional tolerances of aircraft.

It has been said that there is no shortage of customers for composite products, if the price is right. We have the opportunity to test that axiom by advancing OOA processing.

Composites One
Toray Advanced Composites
Harper International Carbon Fiber
3D industrial laser projection
performance composite reinforcements
Toray public database prepreg materials
Custom Quantity Composite Repair Materials
Renegade Material Composites
BARRDAY PREPREG
Airtech
CompositesWorld
KraussMaffei Metering Systems

Related Content

Infusion

The Basics Of Boat Design

Naval architects reveal design, tooling and material selection guidelines for a new sportfishing powerboat.

Read More
Pultrusion

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More
Braiding

Basalt Fibers: Alternative to Glass?

High-temperature performance and superior strength properties may make this late-comer a better choice in some applications.

Read More
Hi-Temp Resins

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More

Read Next

Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Ready-to-Ship Composites