Airtech
Published

The clarity of the retrospectroscope

My mind is easily distracted and consumed by the time-space continuum. Not the Star Trek kind, but the real-life kind.

Share

My mind is easily distracted and consumed by the time-space continuum. Not the Star Trek kind, but the real-life kind. Fact is, I’m intrigued by the messy swirl of random events and direct human action that shapes our history — like the iceberg that floated in front of the Titanic and the helmsman who happened not to see it, or Hans von Pechmann, who in 1898 accidentally heated diazomethane to create what is now known as polyethylene. (Some people call this fate, but I’m not one of them — I’m more of a chaos guy.)

The problem with studying history, of course, is the unusual clarity provided by the retrospectroscope (as my dad calls it). Looking back across the landscape of time to the construction and sailing of the Titanic, we can easily see the fatal flaws in ship design and lifeboat outfitting that doomed those unfortunate passengers. And we assume, to a certain degree, that as soon as Pechmann discovered polyethylene, he rushed out and started molding airtight containers in which to store our leftover mashed potatoes (he didn’t — polyethylene wasn’t even commercialized until 1935).

The real challenge in studying history, however, is better understanding the context of the event, because those living through historical events don’t have a retrospectroscope through which to look: They make decisions based on the information available at that time. Two of our features this month play on this theme in different ways.

The first, “Market Trends” (see “Related Content,” at left), looks back 15 years at an R&D effort that tried to prove to the aircraft industry the viability of a continuously wound aircraft fuselage. The idea was rejected. Looking back, with the carbon-intensive 787 Dreamliner rolling out early this month, this rejection is a head-scratcher. What was the hold-up? The fact is that aircraft manufacturers were not intellectually prepared to accept a continuously wound fuselage, and fiber placement technology was not sufficiently evolved to provide the laydown rates required. That rejection was probably a necessary step in the evolution that led to the development of the Dreamliner.

The second story is our “Focus on Design” (see “Related Content”), which explores the design and development of the carbon fiber engine subframe on the Lamborghini Roadster. It’s an interesting review of the material, fiber, and process combinations with which Lamborghini experimented to build this structural part. Parts like this are engineering marvels, but given that it’s on a vehicle that, at $328,000, costs more than an average American home, I can’t help but wonder if composites will forever nibble at the edge of the mainstream automotive industry.

Yet, if I fast-forward a decade, it seems possible to me that we’ll look back on these high-priced, high-end Lamborghini-like applications as the early, natural stages of the migration of structural composites into the automotive industry, like the first carbon fiber parts on fighter jets. In fact, this maturation might be much closer — we know that a sub-two-minute composites process for automotive application is tantalizingly close at hand.

And take a look at our two features on burgeoning composites use in wind energy applications (see “Related Content”). In some ways, putting composites use here into historical context is easier. Rising oil prices, a finite oil supply and China’s blooming demand for energy set a natural stage for a healthy, happy and growing wind energy industry that is heavily dependent on composites. Still, I wonder where all of this wind energy activity will be 10 years from now. We’ll let you know just as soon as we figure it out.

Chem Trend
Coast-Line Intl
Airtech
pro-set epoxy laminate infusion tool high temp Tg
Airtech
Thermwood Corp.
HEATCON Composite Systems
Harper International Carbon Fiber
NewStar Adhesives - Nautical Adhesives
3D industrial laser projection
KraussMaffei Metering Systems
Carbon Fiber 2024

Related Content

Aerospace

Materials & Processes: Resin matrices for composites

The matrix binds the fiber reinforcement, gives the composite component its shape and determines its surface quality. A composite matrix may be a polymer, ceramic, metal or carbon. Here’s a guide to selection.

Read More
Infusion

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Wind/Energy

Plant tour: ÉireComposites, Galway, Ireland

An in-house testing business and R&D focus has led to innovative materials use and projects in a range of markets, from civil aerospace to renewable energy to marine.

Read More
Recycling

Moving toward next-generation wind blade recycling

Suppliers, fabricators and OEMs across the composite wind blade supply chain ramp up existing technologies, develop better reclamation methods and design more recyclable wind blades.

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Airtech International Inc.