Airtech
Published

No-oven, No-autoclave (NONA)

Room-temperature cure epoxy composites with a 400°F Tg, comparable properties vs. commercial systems without external heat or post-cure, and offering reduced cost and cycle time. Really?

Share

Slightly curved composite tool for Space Launch System (SLS) test panels.
SOURCE: NONA Composites, LLC

No-oven, No-autoclave (NONA) composites technology was developed by Cornerstone Research Group (CRG, Dayton, Ohio) through a 2010 SBIR in conjunction with the National Aeronautics and Space Administration (NASA) Glenn Research Center (Cleveland, Ohio, USA) and is now being commercialized by CRG’s spinoff, NONA Composites LLC (Dayton, Ohio). The original goal was more cost-effective processing of large composite structures and tooling without the large capital expense of autoclaves, ovens or heated tools for cure.

NONA is largely based on what the company terms “commercial off-the-shelf” (COTS) technology. The NONA-001 two-part epoxy resin uses readily available COTS components, combined in its own proprietary formulation. It is processed using conventional resin infusion and low-cost machined foam tooling (i.e., COTS polymeric tooling board). The innovative part is controlling the resin’s exothermic reaction and capturing its heat to achieve full cure and high temperature properties. NONA Composites LLC claim laminates with a glass transition temperature (Tg) of 400°F/204°C achieved via a two-hour cure and six-hour cool-down cycle, enabling service temperatures up to 350°F/177°C.


 

Recent developments were reviewed in the SAMPE Tech 2013 (Oct 21-24, Wichita, Kan., USA) paper, No-oven, no-autoclave processing for NASA composite structures”, including construction of a 127cm by 66cm (50-inch by 26-inch) carbon fiber skin/aluminum honeycomb sandwich part and a 117cm by 107cm (46-inch by 42-inch) curved carbon tool as preparation for building a 1:10 scale payload fairing section (including upper barrel and ogive) tool for the NASA Space Launch System (SLS) heavy-lift launch vehicle. The SLS tooling project is now underway and currently scheduled for completion by late Spring 2014. This is one of many out of autoclave (OOA) composite technologies NASA is exploring (see “Tooling up for larger launch vehicles” in September 2013 CT).

NONA composites have also been tested using National Institution for Aviation Research (NIAR, Wichita, Kan.) specifications, in order to provide a comparison with a currently used matrix system — Cycom 5215 OOA epoxy resin from Cytec (Tempe, Ariz., USA), which has an extensive properties listing in the National Center for Advanced Materials Performance (NCAMP) database. The SAMPE paper cited similar performance in seven-day boil, open hole tension (OHT), open hole compression (OHC), and compression after impact (CAI) testing.  Compression and tensile properties are still being completed, but the damage tolerance an shear properties have been released (see below). The total number of specimens tested so far is still relatively small, but the initial results look promising. Fiber volumes have ranged from 62 to 67 percent by weight with void content consistently below 1 percent.

  NONA Composites In-Plane Shear properties
NONA Composites Short Beam Strength
NONA Composites Damage Tolerance properties

Comparison of NONA process thermal and mechanical performance
to conventional OOA system. SOURCE: NONA Composites, LLC

“We are now working with composite tooling and structures manufacturers,” says Ben Dietsch, NONA Composites LLC chief operating officer, “and have an inventory of resin available to support the increased interest we have received.” He explains companies are seeking reduced cycle time and the ability to make high performance tools from low-cost master models using foam, which machines faster and reduces tooling weight vs. higher density epoxy tooling board. According to Dietsch, though savings are greatest with larger tools, time and cost reductions can be achieved with tools as small as a couple of square feet. “We compare favorably versus LTM tooling prepreg, for example, and we’re also demonstrating advantages beyond tooling, in secondary and tertiary structures.” NONA Composites is also looking forward to primary-type structures, investigating how the NONA resin and curing technology can be combined with toughened prepreg to enable processing benefits for systems already qualified with desired fiber volume and damage tolerance properties.

NONA Composites will exhibit their latest developments at the Wasatch Front Materials Expo (March 5, Salt Lake City, Utah, USA) and CAMX (Oct 13-16, Orlando, Fla., USA).

cut by an Eastman
HEATCON Composite Systems
CompositesWorld
Carbon Fiber 2024
Keyland Polymer
Sysenqo high performance materials
Chem Trend
CW Tech Days Sustainability - Register Today!
Airtech
Thermwood Corp.
A manufacturing puzzle
CAMX 2024

Related Content

Pressure Vessels

Drag-based wind turbine design for higher energy capture

Claiming significantly higher power generation capacity than traditional blades, Xenecore aims to scale up its current monocoque, fan-shaped wind blades, made via compression molded carbon fiber/epoxy with I-beam ribs and microsphere structural foam.

Read More
Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Pultrusion

Materials & Processes: Fabrication methods

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

Read More
Infrastructure

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More

Read Next

Thermoplastics

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Chem Trend