Kraussmaffei Metering Systems
Published

SPE ACCE scholarship winners announced

The winners are Markus Downey of Michigan State University, Fatimat Oluwatoyin Bakare of University of Borås and Sebastian Goris of University of Wisconsin-Madison.

Share

The organizing committee for the SPE (Troy, Mich., USA) Automotive Composites Conference & Exhibition (ACCE, Sept. 9-11, 2014) has announced the winners of the group’s annual SPE ACCE Scholarship Awards for the 2014-2015 academic year. Winning students whose composites-intensive projects were judged to have the greatest potential impact on ground transportation were Markus Downey of Michigan State University, Fatimat Oluwatoyin Bakare of University of Borås and Sebastian Goris of University of Wisconsin-Madison. Each student will receive a total scholarship of $2,000 USD ― sponsored by Michigan Economic Development Corp. (Lansing, Mich.) ― and will return to present the results of his or her research at next year’s SPE ACCE show, Sept. 9-11, 2015.

Markus Downey, who is working on a Ph.D. degree in Chemical Engineering at Michigan State University (East Lansing, Mich., USA), won the scholarship for a student enrolled in a Michigan institute of higher learning with the topic: Hybrid Toughening of Aromatic Epoxy Polymers via Graphene Nano-Platelets and Aliphatic Epoxy Copolymers: Optimized Fiber-Reinforced Polymer Composites for Lightweighting. Explaining how his work is applicable to ground transportation Downey says, "Fiber-reinforced polymer composites will play a significant role in the lightweighting strategies required to meet the new U.S. Corporate Average Fuel Economy (CAFE) standards. My proposed research will look at hybrid-toughening of fiber-reinforced polymer composites by toughening the fiber/matrix interface with aliphatic epoxy co-polymers alone or in conjunction with graphene nanoplatelets as well as toughening the bulk matrix with low concentrations of aliphatic epoxy co-polymers ― two typical areas of failure in fiber- reinforced polymer composites. Through targeted improvements of both the sizing (coating) on the reinforcing fibers and the surrounding polymer matrix, the energy required to propagate cracks in each of these areas should be increased to yield a substantially toughened composite. This, in turn, can help reduce the amount of material needed for a given application, leading to weight and cost savings, or it can possibly broaden usage in new areas of the vehicle, particularly if the composite shows mechanical properties not previously attained."

Originally from Nigeria and currently working on her Ph.D. degree in Materials Science/Polymer Engineering at the Swedish Centre for Resource Recovery at the University of Borås (Borås, Sweden), Fatimat Oluwatoyin Bakare won a scholarship for her proposal on Synthesis of Bio-Based Composites with a Lactic Acid Based Thermoset Resin from Lactic Acid and Allyl Alcohol. Explaining how this work is important for the transportation industry Bakare says, "There have been increased interests in the use of biomass and its derivatives to provide alternatives to fossil fuel resources to reduce environmental risks and improve global sustainability. Biomass and its derivatives can be used in the production of polymer and composite materials, leading to weight loss and gains in fuel efficiency. We have previously reported synthesis of a thermosetting bio-based resin prepared by direct condensation of pentaerythritol, itaconic acid, and lactic acid. This resin had relatively good mechanical properties, but its relatively high viscosity caused poor wetout and impregnation of reinforcements, leading to lowered mechanical performance. Hence, a new resin with lower viscosity that would provide better impregnation of reinforcements is needed. The goal of my new research is to investigate the technical feasibility of a resin based on lactic acid and allyl alcohol combined with natural fiber reinforcement."

Originally from Germany, Sebastian Goris is working on a doctorate degree in Mechanical Engineering at University of Wisconsin-Madison (UWM, Madison, Wis., USA) and won the third graduate scholarship this year with a research project entitled Contribution to the Understanding of Fiber Motion in Compression Molding of Long-Fiber Thermoplastics. Explaining the significance of his topic Goris says, "Compression molding of long fiber- reinforced thermoplastics (LFT) composites is a widely used process to produce semi-structural parts with a desirable balance of low weight, good mechanicals, and cost-efficient manufacturing. However, the final state of the fibers greatly impacts the local and global properties of the finished part and has to be carefully considered, although currently there is no software tool able to predict fiber-matrix separation and fiber dispersion within a molded part. In our group, a mechanistic model has been developed that represents each fiber as a chain of interconnected segments and takes into account excluded volume forces, drag forces, fiber- fiber interactions, and fiber elasticity. For my research, I will introduce this model for an extensive study on fiber attrition, fiber dispersion, and fiber-matrix separation in LFT compression molding. Simulation results will be verified to aid in the understanding of fiber- fiber and fiber-matrix interactions. A more accurate prediction of the anisotropy and heterogeneity within compression-molded LFT parts will provide the foundation for reliable structural analysis and hence automotive part design."

Held annually in suburban Detroit, the SPE Automotive Composites Conference & Exhibition draws over 900 speakers, exhibitors, sponsors, and attendees and provides an environment dedicated solely to discussion and networking about advances in the transportation composites.

TOPCON24
Kent Pultrusion
Toray Advanced Composites
Compression Molding
Wickert Hydraulic Presses
Wabash
HEATCON Composite Systems
pro-set epoxy laminate infusion tool high temp Tg
CAMX 2024
NewStar Adhesives - Nautical Adhesives
3D industrial laser projection
Carbon Fiber 2024

Related Content

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Weaving

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More
Thermoplastics

Protecting EV motors more efficiently

Motors for electric vehicles are expected to benefit from Trelleborg’s thermoplastic composite rotor sleeve design, which advances materials and processes to produce a lightweight, energy-efficient component.

Read More
Trends

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More

Read Next

Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Pressure Vessels

Composites end markets: Energy (2024)

Composites are used widely in oil/gas, wind and other renewable energy applications. Despite market challenges, growth potential and innovation for composites continue.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Airtech International Inc.