Would you like a free digital subscription?

Qualified international subscribers can receive full issues of High-Performance Composites and Composites Technology delivered in a convenient and interactive digital magazine format. Read at your convenience on your desktop or mobile device.

Yes, I would like a free digital subscription!

No thanks, please don't ask again.

March 2010
Carbon Fiber: UP!

Despite 2008-2009 recession lows, prognosticators at CompositesWorld's recent Carbon Fiber Conference predict a decade of highs.

Author: ,
Posted on: 2/5/2010
High-Performance Composites

Click Image to Enlarge

787 first flight

After a two-year delay, the Boeing 787 made its first flight on Dec. 15, this past year. The 787 program’s downs and ups proved a fitting metaphor for recent carbon fiber market activity, and the 787 will be one of the key drivers of the coming surge in carbon fiber demand.

Chris Red mug shot

Chris Red

Tony Roberts mug shot

Tony Roberts

Table 1 - small tow

Table 1

Table 2 - large tow

Table 2

Table 3 - total nameplate

Table 3

Table 4 - aerospace demand

Table 4

Table 5 - consumer/recreation demand

Table 5

Table 6 - energy/industrial demand

Table 6

Table 7 - global demand

Table 7

The carbon fiber market has not been immune to the global recession. Demand for this most expensive and, therefore, most watched high-performance fiber appeared unstoppable through 2007 and into early 2008: The first Boeing 787 Dreamliner was nearing completion. Airbus, after two misfires, had successfully pulled the trigger on preproduction sales for its A350 XWB. Wind energy and other end-markets were gearing up to consume more of this highest of high-performance fiber. And carbon fiber manufacturers, to worldwide industry applause, responded with a series of capacity expansion announcements. But since then, demand has declined. In 2008, the first of a series of technical and supply-chain management problems beset the 787 program, contributing, ultimately, to almost two years of production delays. In parallel, the gathering storms of recession damped demand in markets everywhere. As the economic slump bottomed out in 2009, carbon fiber manufacturers put off or slowed expansion plans.

Those who follow the carbon fiber market, therefore, converged with some uncertainty in December, at CompositesWorld's recent Carbon Fiber 2009 conference, wondering how carbon fiber supply and demand might fare once the recession runs its course. But the consensus at the annual gathering (Dec. 9-11, San Diego, Calif.) was that both supply and demand will resume their upward trajectories.

The message was delivered forcefully by co-presenters Chris Red, VP and editor at Composite Market Reports (Gilbert, Ariz.), and Tony Roberts, principal of AJR Consultant LLC (Lake Elsinore, Calif.). Red and Roberts each outlined forecasts they had developed independently in a “tag-team” format. Although they differed in their predictions for some end-markets and the assumptions on which their figures were based, their data were, in general, more notable for congruence than divergence. (See their market figures and projections at right.)


Carbon fiber supply

Estimating carbon fiber supply is an inexact science, primarily because not all carbon fiber suppliers share data about current and planned capacity. Because of this, conference attendees were told that although there was some uncertainty in the figures, the overall trends and totals are accurate enough to provide a good general sense for how the market could be expected to evolve. The forecasts were based on PAN-based fiber, by far the largest category of carbon fiber product, and therefore of greatest interest to most attendees. The data were categorized by fiber tow size. Small tow encompassed products up to 24K fiber, and large-tow data covered those products larger than 24K.

Figures for small-tow carbon fiber were broken out individually for major suppliers — Toray Industries and Mitsubishi Rayon Co. Ltd. (both based in Tokyo, Japan), Toho Tenax (Wuppertal, Germany), Hexcel (Dublin, Calif.), Cytec Engineered Materials (Tempe, Ariz.) and Formosa Plastics (Taipei, Taiwan). Total nameplate capacity for small-tow PAN carbon fiber in 2009 was about 53,750 metric tonnes (almost 118.5 million lb).

Major suppliers of large-tow fiber include Toray, Toho, Mitsubishi, Zoltek Inc. (St. Louis, Mo.) and SGL Technologies GmbH (Wiesbaden, Germany). Nameplate capacity for large-tow in 2009 totaled ~26,550 metric tonnes (> 58.5 million lb).

Post-recession growth will be driven by the same forces that have propelled the carbon fiber market thus far: lightweighting, particularly for increased fuel efficiency in public and private modes of transport; the potential to reduce product lifecycle costs; and what is expected to be a gradual, global conversion to alternative energy sources. By 2014, Red and Roberts estimate that small-tow nameplate capacity will grow to 66,750 metric tonnes (nearly 147.2 million lb). Large-tow nameplate capacity will be about 45,200 metric tonnes (close to 100 million lb) by 2014. (For annual breakouts by manufacturer, see Tables 1 and 2.) Actual yield of usable fiber will be less because of the knockdown effect - wasted out-of-spec material as compared to nameplate capacity. Red and Roberts said that the knockdown varies quite a bit by tow size but averages about 30 to 35 percent, meaning 65 to 70 percent of the nameplate capacity is marketable.


Carbon fiber demand

Demand for carbon fiber will be led, as it has been for the past few years, by aerospace applications (see Table 4). Beyond the midsized, twin-aisle 787 and A350 XWB, there are single-aisle aircraft in development or early production that promise to make significant use of the material as well. This list includes regional jets, such as the Bombardier Dash-8, the Canadair Regional Jet 100, the Embraer 190/195, and Mitsubishi's MRJ. Bombardier also is working on the CSeries aircraft, based on a 110-seat design concept that will compete, in part, with Boeing's 737 and the Airbus A320. In his keynote address, Jens Hinrichsen, president of Aerospace Advisory Group LLC (New Alexandria, Pa.) weighed factors that will influence the extent to which carbon fiber is practical for construction of smaller commercial transports. His conference comments are condensed in the sidebar below.

Suppressed during the downturn (not least by the storm of negative press unleashed when GM auto execs deplaned in Washington, D.C., to plead poverty and beg bailout funds), the business jet market is nevertheless poised to prosper in a global recovery. More than 80 unique models that make use of carbon fiber composites in primary and secondary structures are in production or scheduled for certification during the 2009-2018 time period.

With the exception of the canceled F-22, military aircraft programs will continue to consume much carbon fiber, led by the F-35 Lightning II, which is still in its System Development and Demonstration phase and is yet to ramp up to full production. Red told conference attendees that he thinks “the days of manned fighter aircraft are over, following development of the F-35.” He believes that emergent unmanned aerial vehicles (UAVs) are the future of military combat airships. If Red is right, then aircraft developers unhindered by pilot-safety issues will be more free to adopt new materials and manufacturing techniques, a scenario that favors selection of carbon fiber-reinforced polymers.

Although Roberts and Red disagreed about how much carbon fiber will be consumed in wind turbine blades (see Table 6), they agreed that the wind energy market shows particular promise. By 2014, Red expects more than 50,000 metric tonnes (110 million lb) of the fiber will go into blades each year. A more conservative Roberts posits 35,000 metric tonnes (77 million lb) for wind blades annually, by 2014. Conference speaker Steven Kopits (Douglas-Westwood, New York, N.Y.) contributed additional insight into the future of offshore wind farm development (see sidebar).

Both look for carbon fiber to make inroads in composite pressure vessels for storage of compressed natural gas (CNG) for CNG-powered vehicles. Aiken, S.C.-based composites industry consultant Malcolm Rosenow highlighted demand for carbon fiber in the natural gas vehicle (NGV) market (see sidebar). Carbon reportedly also has a future in ultrahigh-pressure hydrogen storage tanks, which eventually will feed fuel cell-based electric power systems in vehicles and stationary structures. In 2006, less than 200,000 composite pressure vessels were manufactured. But by 2018, that number is expected to increase to 1.3 million units per annum. 

Conspicuously absent from the glare of the Carbon Fiber 2009 spotlight were three large markets that, thus far, have eluded what composites proponents have long hoped would be star status. In the automotive industry, carbon has earned a niche in the supercar segment where its high cost isn't a deterrent to sales. But current economic woes, which have hit automakers especially hard, and a long history with part-per-minute metal-stamping technology, have limited the bulk of auto composites to glass-reinforced plastics for select underhood, support-structure and interior apps and, in limited quantity, glass-reinforced sheet molding compounds (SMCs) in body panels. Likewise, civil engineering (e.g., bridges and other infrastructure) and the oil and gas industry have been resistant to carbon, in part, because they, too, tend to be change-averse and find greater comfort, in their highly regulated environments, with legacy steel and concrete technologies. These realities are reflected in their comparatively low 2008-2009 annual totals (Tables 5 & 6). Nevertheless, presenter Brian Spencer, president of Spencer Composites Corp. (Sacramento, Calif.) talked about some promising signs in both markets (see sidebar). And Red and Roberts foresaw a decade of solid growth for carbon fiber in all three markets, with each seeing better than two-fold increases by 2018.

Editor's Note: For more insight into Cytec's and Hexcel's short- and long-term carbon fiber prospects, see HPC's news item on p. 26, entitled “Carbon fiber market: Key suppliers offer post-recession predictions.


Side Bar

CF 2009: Comment on key end-markets

Click Image to Enlarge

Jens Hinrichsen mug shot

Jens Hinrichsen

Steve Kopits mug shot

Steve Kopits

Malcolm Rosenow mug shot

Malcolm Rosenow

Brian Spencer mug shot

Brian Spencer

Conference keynoter Jens Hinrichsen (Aerospace Advisory Group LLC) evaluated factors likely to influence materials selection for aircraft that will replace the Airbus A320 and Boeing 737 families.

He started by establishing structures that he believes are very likely or somewhat likely to be composite structures: the empennage and rear pressure bulkhead and frame, the center wing box, floor beams and the unpressurized fuselage. The structures he considers less likely to be made from composites, and the subject of his remarks, include the pressurized fuselage skins and stringers, standard frames, load-introduction frames and door cut-out doublers.

For the fuselage skins, Hinrichsen said the design driver will be damage tolerance, not strength, and reported that weight savings at the cost of increased maintenance will be unacceptable to Boeing, Airbus and their customers. Every plane, he noted, is sold with a guaranteed maintenance cost for each part/structure, thus a composite fuselage skin must meet that maintenance cost requirement. Additionally, the potential for barely visible impact damage will require careful definition of minimum skin thickness.

In particular, airlines are most worried about damage from runway debris, which costs them $4 billion annually in repairs. Here, Hinrichsen said airlines have two challenges: Determining the severity of damage in a composite skin structure, and developing a skin structure that allows safe flight if barely visible damage is overlooked during inspection. Another influence on material selection is tool occupation time. To cost-justify composites, the tooling for composite structures must be amortized quickly, and that will require faster material placement rates from automated tape laying and fiber placement equipment.

Hinrichsen ended with a fuselage skin thickness proposal for narrow-body aircraft, if composites are used: 3 mm/0.12 inch for the upper fuselage, 3.5 mm/0.14 inch for the side fuselage, and 4 mm/0.16 inch for the bottom portion of the fuselage.

In the end, said Hinrichsen, aircraft manufacturers will be forced to balance weight, strength and structural thickness requirements: “Potential of weight savings via composites in the fuselage is significantly reduced for narrow-body aircraft as strength/stiffness requirements result in skin thickness well below the threshold for structural thickness.”

Energy business analyst Steven Kopits (Douglas-Westwood), updated offshore wind farm development, noting that commercial activity didn't begin until 2001, and then only in Europe, but is growing quickly. Continued growth is likely because coastal waters there are relatively shallow, major energy consumers are nearby and governments are well organized to encourage development. In Europe, current offshore installed capacity is 1.5 GW, 334 MW of which was placed in 2008, with an additional 1.2 GW under construction right now. Dominated, at first, by Denmark, offshore turbine construction is now is led by the United Kingdom, he says. Although the U.S. is lagging European offshore efforts, it has attractive waters in the Great Lakes and off the New England coast (West Coast waters are too deep).

One of the biggest hurdles right now is cost. Kopits reported that offshore wind costs $5 million (USD) per nameplate megawatt, $3 million of which is subsidized. By contrast, 600 MW of offshore wind ($2 billion in subsidies) is the equivalent of one gas-fired power plant. Further, capital expenditure and operations and maintenance costs, offshore, are typically about twice that for onshore systems, he said. Accordingly, Kopits predicted that offshore developers will seek larger turbines with longer blades, in which carbon fiber will play a critical role in meeting strength and stiffness requirements at reduced weight.

In the 2009-to-2013 time period, Kopits looks for 6.6 GW of installed offshore capacity worldwide, worth about $26 billion and comprising 4,000 to 5,000 composite rotor blades. For the 2013-2017 timeframe, Kopits said to look for seven to eight offshore wind farms in North America, each 10 to 20 miles (16 to 32 km) offshore in water 100 to 150 ft (30 to 46m) deep. These projects will consume about 1,000 turbines a year for four years, with each turbine rated at 4 to 5 MW. Following this flurry, Kopits expects 100 to 200 new offshore turbines per year.

Industry consultant Malcolm Rosenow discussed the potential demand for carbon fiber in the natural gas vehicle (NGV) market. He reported that there are currently 11 million to 12.5 million NGVs on the road, worldwide. Pakistan, Argentina, Brazil, Iran and India together account for 72.5 percent of the world's total number of NGVs. Six countries from the Asia-Pacific region round out the top 10, which collectively represents 88.6 percent of the total market. Among them, China expects high growth: Its government has mandated conversion to CNG-powered commercial vehicles in certain cities. By 2020, he said, this number could be anywhere between 53 million and 82 million vehicles.

Rosenow said to expect 65 million NGVs by 2020, with demand for 166.5 million pressure vessels. The question outstanding, he said, is What type of pressure vessel will prevail? In North America and Europe, most CNG is stored in Type III and Type IV composite overwrapped pressure vessels (COPVs); in other regions of the world (~93 percent), vessels are fabricated to meet Type I (heavy steel) and Type II (fiberglass) parameters. Composite storage vessels are appealing for many reasons, including reduced weight, durability and storage density. But the weight and cost of CNG pressure vessels, said Rosenow, are important considerations when specifying the number and type of tanks to be put in a vehicle. The fastest growing CNG vehicle markets use Type I and Type II vessels, but with favorable supply and pricing, demand could increase for use of Type III and IV (carbon fiber) vessels.

This demand will depend on market forces — specifically, if and to what extent North American and European governments mandate some sort of conversion to CNG vehicles. Under a “business as usual” scenario, he predicted that carbon fiber demand for Type III and IV vessels will range from 5,100 to 10,200 metric tonnes/yr (11.2 million to 22.5 million lb/yr). Under his low-end “policy-governed” scenario, Rosenow expects carbon fiber demand to range from 34,500 to 69,000 metric tonnes/yr (76.1 million to 152.1 million lb/yr).

Spencer Composites Corp. founder Brian Spencer focused his presentation on the disparity between actual and potential use of carbon fiber in offshore oil and gas applications. Although carbon fiber has been talked about for years and its potential in this market is substantial, Spencer noted that oil exploration offers several challenges: Conservatism and familiarity with metal; high exploration and development cost/risk; a harsh environment; in-service inspection requirements; and increasing distance between oil rigs and existing infrastructure.

Incentives for using composites, however, also are substantial: Light weight, corrosion resistance — a strong sales point in seawater — fatigue resistance, embedded instrumentation, and thermal insulation. Potential carbon fiber use in offshore structures includes: 45 to 50 lb/ft in drilling risers; 10 to 12 lb/ft in production risers; 6 to 7 lb/ft in choke and kill lines; 2 to 5 lb/ft in auxiliary lines; and 16 to 17 lb/ft in 270-mm/10.7-inch-diameter tethers. Spencer noted that one tension leg platform (TLP), on which carbon fiber use was maximized, could consume more than 7 million lb (3,175 metric tonnes) of the material.

Spencer also evaluated carbon fiber use in flywheels, which are being developed for storage of wind energy during non-peak generation. One flywheel, he said, could consume as much as 1,100 lb/500 kg of carbon fiber.

Spencer added that, to date, carbon fiber use in exploration and storage include a composite drilling riser in the Heidrun oil field (North Sea) that has been in service since 2001; a U.S. Department of Energy-sponsored project for a deepwater composite drilling riser and a separate composite auxiliary line project - both under way — and a project in which frequency regulation using a composite flywheel has been certified.

Channel Partners