Composites One
Published

Carbon fiber recycling: Ongoing research

There is much ongoing research in the area of recycling carbon fiber.

Share

There is much ongoing research in the area of recycling carbon fiber. Among other things, researchers are looking for better ways to deal with contaminated carbon fiber-reinforced polymer (CFRP) scrap, methods to improve the overall properties of reclaimed fibers, and approaches to improve the processability of reclaimed fibers.

A team lead by Dr. Nicholas Warrior and Dr. Steve Pickering at the University of Nottingham (U.K.) has been studying the use of fluidized bed technology. The group believes the approach is well suited for end-of-life components that may contain a mixture of materials and contaminants and, therefore, are unsuitable for other recycling methods. In the fluidized bed process, crushed composites scrap material is placed in a reactor on a grate, and a stream of fluid (in this case, a gaseous airstream) is forced up through the material at a temperature of 550°C/1022°F. Organic material, including the composite’s resin matrix, is oxidized. However, the velocity of the airflow is such that as the organics burn off, the lightweight fiber is forced upward while heavier matter, such as metallic material, remains in the reactor “bed.”

The now clean fibers are removed from the reactor by the gas stream, which propels them into a cyclone separator, a conical/cylindrical chamber in which the air flows in a downward spiral pattern, and then is directed upward through the center of the chamber and flows out the top. The chamber geometry and airflow rate are set in such a way that carbon fibers in the tornado-like airstream are driven outward by centrifugal force, strike the outside wall and fall to the chamber bottom, where they can be collected. The process also provides users the potential to recover the heat energy from the fully oxidized polymer and use it to reduce the system’s energy consumption. However, according to Pickering, carbon fibers recovered using this approach currently exhibit a loss of strength, ranging from 25 to 50 percent.
However, Pickering sees great potential in the use of supercritical fluids in such processes. At a temperature and pressure above their thermodynamic critical point, these fluids can diffuse through the composite solids like a gas and then dissolve the materials like a liquid. Supercritical fluids, such as propanol, are being tested in thermal fluid processes under high pressure and at temperatures of 200°C to 300°C (392°F to 572°F) to break down epoxy resin into more elementary materials that, potentially, could be reused as chemical products. After processing, high-quality clean carbon fibers can be recovered. The reclaimed fibers reportedly retain up to 97 percent of the tensile strength of the virgin material, with no change in modulus.  

Adherent Technologies Inc. (Albuquerque, N.M.) also continues research into carbon fiber recycling. Most recently, the company has developed a multistage recycling approach to address the thermoplastic toughened layers between the standard epoxy composite on Boeing’s 787. Adherent’s process is designed not only to reclaim the fiber but also to process the polymeric waste, breaking it down into more basic chemical building blocks that subsequently could be preprocessed into valuable chemicals or fuels.

Meanwhile, at Imperial College (London, U.K.), researchers are conducting extensive mechanical testing of composites manufactured from recycled fibers. Failure mechanisms are being used to build models and predict the performance of composites made from recycled fibers. One intriguing result, so far, is that testing indicates that when reclaimed fiber bundles held together by pyrolytic char are used as a reinforcement in a new molded product, they actually enhance the fracture toughness of the composite.
 

Precision Board High-Density Urethane
UV Cured Powder Coating from Keyland Polymer
De-Comp Composite Materials and Supplies
Park Aerospace Corp.
Composites One
Janicki employees laying up a carbon fiber part
Harper International Carbon Fiber
CompositesWorld
CompositesWorld
Airtech
pro-set epoxy laminate infusion tool high temp Tg
Thermwood Corp.

Related Content

Carbon Fibers

Cryo-compressed hydrogen, the best solution for storage and refueling stations?

Cryomotive’s CRYOGAS solution claims the highest storage density, lowest refueling cost and widest operating range without H2 losses while using one-fifth the carbon fiber required in compressed gas tanks.

Read More
Feature

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More
Carbon Fibers

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Aerospace

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More

Read Next

Wind/Energy

Carbon fiber reclamation: Going commercial

As the first commercial-scale carbon fiber recycling operations go online, research continues into both recycling alternatives and applications for recyclate.

Read More
Trends

CW’s 2024 Top Shops survey offers new approach to benchmarking

Respondents that complete the survey by April 30, 2024, have the chance to be recognized as an honoree.

Read More
Filament Winding

From the CW Archives: The tale of the thermoplastic cryotank

In 2006, guest columnist Bob Hartunian related the story of his efforts two decades prior, while at McDonnell Douglas, to develop a thermoplastic composite crytank for hydrogen storage. He learned a lot of lessons.

Read More
Precision Board High-Density Urethane